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What is reinforcement learning

Action

Observation, Reward

Agent Environment

Reinforcement learning: aims at maximizing a cumulative reward by
selecting a sequence of optimal actions to interact with a
stochastic unknown environment, where the dynamics is usually
modeled as a Markov decision process (MDP)

1Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Cambridge: MIT press, 2018.

Y. Xu, W. Xu, Z. Wang, J. Lin, S. Cui IEEE ICC 2019 May 22nd, 2019 4 / 23



Main components of RL

State & Action: RL input & output

Reward: immediate feedback, indicates the good and bad events

Value function : the accumulated reward over the future

V π(s) = Eπ
[ ∞∑
t=0

γtr(st , at)
∣∣∣st = s

]
,

Policy function: behavior of the agent, the mapping between state
and action

π : S → P(A)
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What is deep reinforcement learning?

Using deep neural networks to approximate

Value function: model-free, e.g., deep Q-network and its variants

Policy function: model-free, e.g., DDPG, A3C, PPO
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Why using (deep) RL to solve MLB?

Challenges: Traditional rule-based or model-based mobility load
balancing (MLB) models can hardly adapt to complicated and
changing wireless networks, e.g.,

random network topology
scalability to large-scale networks

Contributions:
We propose a RL-based MLB model

autonomous learning, good adaptability to unknown environments
more far-sighted optimization goal

We proposed an off-policy DRL-based algorithm for MLB

learning under multiple behavior policies
asynchronous parallel learning framework
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Mobility Load Balancing

Mobility load balancing (MLB): load balancing in self-organizing
networks (SONs), controls logical cell boundaries by tuning the cell
individual offset (CIO) to control user handovers
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Handover in SONs

Handovers between a serving cell i and a target cell j are triggered
according to the A3 condition by 3GPP:

Fj − Fi > Oi ,j + Hys

Fi , Fj : users reference signal received power (RSRP)
Oi,j : the HO difference between cell i and j
Hys: the Handover Hysteresis (Hys), prevent frequent handovers

Our aim is to optimally adjust the Oij of each cell pair so as to
balance the load distribution
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Learning Context of RL

Cell load is defined as the ratio of users’ required physical resource
blocks (PRBs) versus the available PRBs

State: i) the load derived from the averaged load ρ̃i = ρi − ρg , where

ρg = 1
N

∑N
i=1 ρi with N the number of SBS; ii) the fraction of the

edge users Ei .

st =
[
ρ̃t1, ρ̃

t
2, · · · , ρ̃tN ,E t

1 ,E
t
2 , · · · ,E t

N

]>
.

Action: the CIO value of each cell pair, i.e.,

at = {Oij(t)|∀i , j ∈ I}

Reward: the inverse of the maximum cell load of cell set I

r(st , at) =
1

maxi∈I ρi (t)
,
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Problem Formulation

The mathematical problem can be formulated as

P0 : max
µ

J(µ)

s.t. C1 : Xu,i ∈ {0, 1},
∑
i∈I
Xu,i ≤ 1,∀u ∈ U

C2 : Oij ∈ [Omin,Omax], ∀i , j ∈ I

where

J(µ) = E(rγ0 |µ), rγt =
∞∑
k=t

γk−tr(sk , ak)

Remark: the RL-based formulation aims at achieving a more
far-sighted balanced load distribution
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Learning Under Multiple Behavior Policies

Off-policy RL: the target policy
is optimized by using the
samples generated by following
the behavior policy

Multiple behavior policies:
improved stability and efficiency,
expert guided learning

Target Policy

Value function Critic

TD error

Behavior Policy

A
ct

io
n

Environment

States

Replay

Tuple (s,a,r,s )
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Problem Formulation Under Multiple Behavior Policies

The mathematical problem can be formulated as

P0 : max
µ

J(πθ) =
∑
m∈M

Jβm(πθ).

s.t. C1 : Xu,i ∈ {0, 1},
∑
i∈I
Xu,i ≤ 1,∀u ∈ U .

C2 : Oij ∈ [Omin,Omax], ∀i , j ∈ I.

where

Jβ(πθ) = Es∼κβ

[ ∞∑
k=0

γk r (s, πθ(s))

]
,

Remark: The objective can be viewed as optimizing the value
function of the target policy averaged over the state distribution of
the behavior policy
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Parallel Learning Framework
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Figure: Overview of the DRL architecture for MLB
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Simulation Setup

Environment:

six cells randomly distributed in a 1km2 area
200 users randomly walking at 1m/s
constant bit rate (CBR) traffic demand (32 ∼ 80kbps)

Comparing Schemes:

rule-based control: constant step size and adaptive step size
learning-based control: Q-learning
proposed DRL-based control: single behavior policy and multiple
behavior policies

The performances are averaged over 50 different randomized cell
topologies to give a fair comparison

1Kwan, Raymond, et al. ”On mobility load balancing for LTE systems.” Vehicular Technology Conference Fall (VTC
2010-Fall), IEEE, 2010.

2Yang, Ying, et al. ”A high-efficient algorithm of mobile load balancing in LTE system.” Vehicular Technology Conference
(VTC Fall), IEEE, 2012.

3Mwanje, Stephen S., Lars Christoph Schmelz, and Andreas Mitschele-Thiel. ”Cognitive Cellular Networks: A Q-Learning
Framework for Self-Organizing Networks.” IEEE Transactions on Network and Service Management 13.1 (2016): 85-98.
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Experiment Result: Rewards
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under a CBR of 80 kbps, averaged every 200 steps

no-MLB baseline (71%); rule-based control (64%); Q-learning-based
control (70%); proposed DRL-based control (60%)
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Experiment Result: HFR and LSD
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(b) Load Standard Deviation

Handover failure: we block incoming handover attempts to a cell with
load exceeding 80% for admission control

Load standard deviation: an indicator for the load distribution among
all the cells
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Large-Scale MLB with A Two-Layer Framework

A two-layer architecture:

dynamic load-aware
clustering
adaptive DRL-based
in-cluster MLB

Main advantages:

scalability: self-organized
control
learning efficiency: break
the large non-convex
problem into smaller
pieces
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Experimental Results
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(c) Performance of learning under multi-
ple behavior policies
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Conclusion

We propose a RL-based MLB model
autonomous adaptation to unknown environments
more far-sighted learning goal

We proposed an off-policy DRL-based algorithm for MLB

learning under multiple behavior policies
asynchronous parallel learning framework

The proposed model and algorithm form a general autonomous and
intelligent network control framework, which is also promising to solve
other large-scale network control problems in the future systems by
changing the learning context.
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